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Number theory is among fields of mathematics which use methods from other
areas the most. One incoming stream of tools comes from mathematical analysis.
Over the past years analytical number theory got increasingly popular even in
the context of mathematical olympiads; Tomek Kobos’s article in ∆3

16 showcases
a nice selection of common methods. However, the ‘alien’ concepts of limits,
series, convergence and derivatives might be slightly intimidating for students
new to this area. One of advantages of Hilbert’s Irreducibility Theorem (HIT for
short) is that it packs a lot of insight from analysis and/or algebraic geometry in
an understandable, number theoretical form.

Recall that a polynomial in two variables P (x, y) is a finite sum of monomials,
each of which has a form aijx

iyj . We will mostly work in the case when numbers
aij are integers; the set of all such polynomials will be denoted by Z[x, y]. Among
examples we can list x3 − y2, x2 − 2xy + 2y2 or x3 − x2y + y4 + 1. Another
example is y3 − 2y + 1, although it doesn’t contain the variable x, and we might
want to be careful about that. We have the corresponding notion of the degree
for two-variable polynomials – by definition, the degree of monomial aijx

iyj is
i+ j, and the degree of a polynomial is the maximum of degrees of its monomials.
We can also define the degree in a particular variable; the degree of P (x, y) in
x is just the usual degree if we forget about the fact that y is a variable. For
instance, the polynomial P (x, y) = x3 − x2y3 + y4 + 2 has

degP (x, y) = 5, degx P (x, y) = 3, degy P (x, y) = 4.
Similarly as in one-variable case, we say P (x, y) is reducible if it can be written as
a product P1(x, y)P2(x, y) where P1, P2 are non-constant polynomials; otherwise
we say it’s irreducible. A well-known tool called Gauss’ Lemma implies that if
P (x, y) has integer coefficients and it decomposes as P1(x, y) · P2(x, y), where
P1, P2 have rational coefficients, then we can also find such an example
of P1, P2 with integer coefficients.

As with primes and integers, irreducible polynomials can be thought of
as building blocks: any polynomial P (x, y) can be written as a product
Q1(x, y)α1 · . . . ·Qk(x, y)αk , for some irreducible polynomials Q1, . . . , Qk and
some positive integer exponents αi.A curious reader can find the proof of
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Theorem 1 (Hilbert). Let P (x, y) be an irreducible polynomial with integer
coefficients, which is dependent on the variable x (i.e., degx P (x, y) > 0). Then
we can find infinitely many integers t for which the (one-variable) polynomial
ft(y) := P (t, y) is also irreducible, and moreover deg ft = degy P (t, y).

An easy example: Q(x, y) = y2 − x is irreducible. If we try to put t = 1, then the
polynomial Q(1, y) = y2 − 1 factors as (y − 1)(y + 1). However it’s not hard to see
that such factorisation occurs precisely when t is a square – thus, we can choose
any t which is not a square, and obtain an irreducible polynomial. We can go
even further.

Proposition 2. Suppose R(x) is a polynomial with integer coefficients such that
R(t) is a square for any integer t. Then there is a polynomial Q(x) with integer
coefficients such that R(x) = Q(x)2.

Proof. Consider the polynomial P (x, y) = y2 −R(x). Suppose it is irreducible.
Then by HIT we can find an integer t such that P (t, y) is irreducible. But we
know R(t) = a2 for some a, and so P (t, y) = y2 − a2 = (y − a)(y + a) is reducible.
This contradiction means that P (x, y) is reducible.

Therefore we can find P1, P2 with integer coefficients, non-constant, so that
P (x, y) = P1(x, y)P2(x, y). If degy P1 = 0 (so P1 doesn’t contain y), then P1 would
depend only on x, and it would have to divide the leading coefficient of y in
P (x, y). But this is 1, so this is impossible. Hence the only possible case is that
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both P1 and P2 are linear in y (as degy P (x, y) = 2). But then by examining
leading coefficients again, we get that P1(x, y) = y +Q1(x), P2(x) = y +Q2(x) for
some polynomials Q1, Q2 (as those leading coefficients multiply to 1, and we can
multiply our polynomials by −1 if needed, without loss of generality). Therefore

y2 −R(x) = P (x, y) = P1(x, y)P2(x, y) = (y +Q1(x))(y +Q2(x))
= y2 + y(Q1(x) +Q2(x)) +Q1(x)Q2(x).

By comparing coefficients, we get Q1(x) +Q2(x) = 0, and so R(x) =
−Q1(x)Q2(x) = Q1(x)2. □

In fact, we can prove something even stronger. We will have to use the following,
innocently-looking fact. However, we remark this is not easy to prove; one of its
proofs involves Chebotarev’s theorem.

Theorem 3. If f(x) is an irreducible polynomial with integer coefficients with
deg f ⩾ 2, then there are infinitely many primes p which do not divide f(t) for
any integer t.

Our final goal is to prove the following:

Theorem 4. Let P (x, y) ∈ Z[x, y] be a polynomial with the following property:More on Theorem 4 can be found here:
H. Davenport, D. Lewis, A. Schinzel,
Polynomials of certain special types,
Acta Arith. (1964),
http://eudml.org/doc/207456

for any non-constant arithmetic sequence (an)∞
n=−∞ of integers, we can find an

index i ∈ Z and an integer y such that P (ai, y) = 0. Then there is a polynomial
R(x) ∈ Q[x] such that P (x,R(x)) = 0 identically.

This will generalise our previous Proposition 2 in two ways. First, we no longer
need every t to satisfy something, but only sufficiently many such t’s to cover all
integer arithmetic sequences. Second, we could be using any polynomial in place
of y2. A problem at the end of this article illustrates this last observation.

Proof of Theorem 4. First observe that our condition on arithmetic sequences
actually gives us infinitely many indices i for which P (ai, y) = 0 has a solution
in y. Indeed, we know there is at least one such i, but then a′

j := ai+1+2j is also
an arithmetic sequence (these are odd terms of (an) if i is even, and even terms
if i is odd), which is a subset of (an) not containing ai. This way we get another
index, and we can continue this process as long as we want.

We can factor P (x, y) as a product Q1(x, y) · . . . ·Qk(x, y), for some irreducible
polynomials Qj (not necessarily distinct). If any Qj depends only on x, then we
can safely ignore this component, as it only gives us finitely many t’s for which
P (t, y) = 0 has a solution. Similarly if Qj(x, y) = 0 itself has only finitely many
solutions in x and y, we can ignore it – indeed, in both cases the polynomial
P ′ := P/Qj satisfies both the problem’s assumptions and its claim if and only if
P does.

We can now use HIT to find numbers tj such that each Qj(tj , y) is an irreducible
polynomial, with the same degree in y as Qj(x, y) originally was. If this degree
is at least 2 for every j, then we can use Theorem 3 to obtain primes pj so that
pj ∤ Qj(tj , y), for each j; moreover we can choose these primes to be pairwise
distinct.

Now let’s use Chinese Remainder Theorem to find a solution to the system
of congruences t ≡ tj (mod pj) for j = 1, . . . , k. The solution will be of form
t ≡ c (mod p1p2 . . . pk) for some c. In other words, the set of solutions forms the
arithmetic sequence ai = c+ ip1p2 . . . pk. We know we will find i and y such that
P (ai, y) = 0. Therefore, Qj(ai, y) = 0 for some j. But at the same time

Qj(ai, y) ≡ Qj(tj , y) ̸≡ 0 (mod pj),
and so we get a contradiction.

Hence some Qj is linear in y; without loss of generality it’s Q1. We can write
Q1(x, y) = A(x)y +B(x) for A,B polynomials. We already commented why
we can assume that each Qj(x, y) = 0 has infinitely many solutions in (x, y);
therefore A(x) divides B(x) for infinitely many values of x. But this means that
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A(x) divides B(x) as a polynomial (for that, consider gcd(A(x), B(x))). Therefore
R(x) = − B(x)

A(x) is a polynomial, and hence P (x,R(x)) = Q1(x,R(x)) = 0. □

A careful reader will notice that Theorem 4 only gives R with rational, and
not integer, coefficients. Indeed, if we took P (x, y) = x2 + x− 2y, we would
get R(x) = x(x+1)

2 . We finish by presenting a problem illustrating that in some
situations we can actually get R(x) to have integer coefficients.

Problem. Suppose P,Q are two polynomials with integer coefficients, such that
for any integer n we can find an integer m so that P (n) = Q(m). Prove that then
there is a polynomial R(x) with rational coefficients such that P (x) = Q(R(x)).
Moreover, if polynomial Q(x

k ) does not have integer coefficients for any k ⩾ 2,
prove that R(x) has integer coefficients.
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In this article, we will address the following problem.

In a village there is a thief and n policemen. The alleys in this village form an
equilateral triangle along with its midlines (Fig. 1). The thief’s maximum speed
is κ > 0 times greater than the policemen’s maximum speed. Given that everyone
can see each other and the (continuous) movement is possible only along the
alleys, determine whether the policemen can catch the thief from any starting
position?B D C

EF

A

Fig. 1 Let us start the solution by analysing some simple cases. Assume that there is
only one policeman, i.e. n = 1. This situation is trivial. If κ < 1 (i.e., the thief is
slower than the policeman), the policeman has a winning strategy: he can chase
the thief regardless of the route the latter takes, eventually catching him. If κ ⩾ 1,
the thief has a winning strategy by looping in a cycle (such as A → B → C → A
in Fig. 1) and adjusting his velocity and direction according to the policeman’s
movement.

The situation changes drastically (in favour of justice) if there are three (or
more) policemen. We prove that in this case they will catch the thief regardless
of his speed. One possible strategy for them is to position themselves at points
D,E and F , respectively (using the notation of Fig. 1). In this way they partition
the whole village into six connected parts (or components), as shown in Fig. 2.
One of these parts contains the thief, and this part (like every other one) is
closed at both ends by policemen. It is enough for one of them to move towards
the other, thus catching the thief.B D C

EF

A

Fig. 2 It remains to consider the case of two policemen, which is more demanding.
First, we prove that for κ ⩽ 3 the police win. The first policeman is the one to
chase the thief (that is why we’ll call him the chaser). His only task is to prevent
the thief from hiding forever in one place. More precisely, he has to make sure
that the thief’s last-visited middle node keeps changing over time (by middle
node we mean D, E, or F ). It is easy to see that only one policeman is enough
to ensure this.

The second policeman, whom we’ll call the watcher), has a more subtle task.
Firstly he needs to go to point W that splits the segment EF in a 1:2 ratio
(Fig. 3); he does not need to hurry. When he gets there he needs to watch the

B D C

EF

A

W

Fig. 3

thief closely (as watchers do). Basically his task is to cut off the thief’s escape
route whenever possible. For example, if the thief enters the ‘upper corner’
E–A–F through point E, the watcher must prevent the thief from escaping
this corner through point F . It is possible to do so since |EA|+|AF |

|W F | = 3 ⩾ κ.
There is also one tiny catch – at the same time the thief comes back to the
point E, the watcher needs to be back at point W . But this can be ensured
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