
A(x) divides B(x) as a polynomial (for that, consider gcd(A(x), B(x))). Therefore
R(x) = − B(x)

A(x) is a polynomial, and hence P (x,R(x)) = Q1(x,R(x)) = 0. □

A careful reader will notice that Theorem 4 only gives R with rational, and
not integer, coefficients. Indeed, if we took P (x, y) = x2 + x− 2y, we would
get R(x) = x(x+1)

2 . We finish by presenting a problem illustrating that in some
situations we can actually get R(x) to have integer coefficients.

Problem. Suppose P,Q are two polynomials with integer coefficients, such that
for any integer n we can find an integer m so that P (n) = Q(m). Prove that then
there is a polynomial R(x) with rational coefficients such that P (x) = Q(R(x)).
Moreover, if polynomial Q(x

k ) does not have integer coefficients for any k ⩾ 2,
prove that R(x) has integer coefficients.

Can the policemen catch the thief?
Alexandru BENESCU**Student, Tudor Vianu National College

of Computer Science, Romania
In this article, we will address the following problem.

In a village there is a thief and n policemen. The alleys in this village form an
equilateral triangle along with its midlines (Fig. 1). The thief’s maximum speed
is κ > 0 times greater than the policemen’s maximum speed. Given that everyone
can see each other and the (continuous) movement is possible only along the
alleys, determine whether the policemen can catch the thief from any starting
position?B D C

EF

A

Fig. 1 Let us start the solution by analysing some simple cases. Assume that there is
only one policeman, i.e. n = 1. This situation is trivial. If κ < 1 (i.e., the thief is
slower than the policeman), the policeman has a winning strategy: he can chase
the thief regardless of the route the latter takes, eventually catching him. If κ ⩾ 1,
the thief has a winning strategy by looping in a cycle (such as A → B → C → A
in Fig. 1) and adjusting his velocity and direction according to the policeman’s
movement.

The situation changes drastically (in favour of justice) if there are three (or
more) policemen. We prove that in this case they will catch the thief regardless
of his speed. One possible strategy for them is to position themselves at points
D,E and F , respectively (using the notation of Fig. 1). In this way they partition
the whole village into six connected parts (or components), as shown in Fig. 2.
One of these parts contains the thief, and this part (like every other one) is
closed at both ends by policemen. It is enough for one of them to move towards
the other, thus catching the thief.B D C

EF

A

Fig. 2 It remains to consider the case of two policemen, which is more demanding.
First, we prove that for κ ⩽ 3 the police win. The first policeman is the one to
chase the thief (that is why we’ll call him the chaser). His only task is to prevent
the thief from hiding forever in one place. More precisely, he has to make sure
that the thief’s last-visited middle node keeps changing over time (by middle
node we mean D, E, or F ). It is easy to see that only one policeman is enough
to ensure this.

The second policeman, whom we’ll call the watcher), has a more subtle task.
Firstly he needs to go to point W that splits the segment EF in a 1:2 ratio
(Fig. 3); he does not need to hurry. When he gets there he needs to watch the

B D C

EF

A

W

Fig. 3

thief closely (as watchers do). Basically his task is to cut off the thief’s escape
route whenever possible. For example, if the thief enters the ‘upper corner’
E–A–F through point E, the watcher must prevent the thief from escaping
this corner through point F . It is possible to do so since |EA|+|AF |

|W F | = 3 ⩾ κ.
There is also one tiny catch – at the same time the thief comes back to the
point E, the watcher needs to be back at point W . But this can be ensured
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if the watcher’s velocity is always exactly three times smaller than the thief’s
(preserving an appropriate direction).
Here is the complete list of the watcher’s guarding capabilities:
(a) if the thief enters E–A–F through E, he cannot escape through F
(b) if the thief enters E–A–F through F , he cannot escape through E
(c) if the thief enters D–B–F through D, he cannot escape through F
(d) if the thief enters D–C –E or D–E through D, he cannot escape

through E

As we already know, the chaser forces the thief to switch between nodes D, E,
and F . Now, the conditions (a)–(d) impose strict restrictions on the order in
which the thief can visit these nodes:D

EF

Fig. 4 • only node D can be visited directly after E or F ,
• only node F can be visited directly after D, and this can only be done via

edge D–F .
These limitations are illustrated by a directed multigraph in Fig. 4. It turns out
that the policemen are able to force the thief to run in the cycle D → F →D. But
how can they eventually catch him? It is enough to provide one more instruction
to the chaser: he must traverse the edges of the triangle DFB only clockwise.
This does not change his ability to keep the thief moving and make him changeNote that, contrary to his name, the

chaser may be arbitrarily slow. But
definitely he needs to be persistent the nodes, but in this way he will eventually bump into the thief when he is

already forced to run in cycle. This completes the proof that the policemen have
a winning strategy in this case.
Now we prove that for κ > 3, it is the thief who has a winning strategy (with
a proper initial placement). This is already suggested by the previous analysis.
Basically his strategy is to start at one of the nodes D,E, F and move to another
of those nodes whenever he is threatened by one of the policemen. Let us work
out the details.
Assume that the thief starts at node D. He stays there until one of the
policemen (whom we call the chaser again) gets closer to him than, say, ε = 0.2
(we assume |EF | = 1). Then the thief attempts to move to either E or F .
Without loss of generality assume that the chaser approaches the thief from the
direction of points B or F . Assume that the thief covers length 1 in one minute.
Consider the following cases:
(I) If the other policeman prevents the thief from going directly to F , thenB D C

EF

A

Fig. 5. The thief is depicted by a black
circle, the policemen are white circle and
square (the chaser is denoted by a circle)

there is no policeman on edge D–E and hence the thief can reach E in
one minute – less than is needed for both policemen to get there (Fig. 5).

(II) If the other policeman is on edge D–E then the thief can reach F in two
minutes, and he gets there any policeman arrives (Fig. 6). Note that if the
chaser is on segment BD, the thief can reach F in just one minute, but
this is not important for our analysis.

B D C

EF

A

Fig. 6.

(III) Otherwise the thief can directly reach E in 1 minute and F in at most
2 minutes. Note that it takes more than 2 minutes for the chaser (who
initially is close to D) to get to any of the points E or F . As for the other
policeman, Figure 7 presents two sets – light blue is the set of points,
starting from which he can get to E in 1 minute and light green – the set
of points, starting from which he can get to F in 2 minutes. It is clear that
by the assumption κ > 3 those two sets do not intersect. Hence the thief can
pick one of those nodes, being sure that he will reach it before the other
policeman.

B D C

EF

A

Fig. 7.

Of course, being able to switch nodes once implies the ability to do so
indefinitely. Hence we can conclude that the thief has a winning strategy if
and only if n = 1 and κ ⩾ 1 or n = 2 and κ > 3. Naturally, this problem can
be generalized to other village configurations, such as the 2 × 2 grid or even more
difficult ones, such as the N ×M grid. We encourage the reader to explore similar
strategies for these cases.
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