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Program I encountered Benford’s Law for the first time at a young age while reading

through a book on mathematical curiosities. The simplicity and generality of
the law made it fascinating to me – especially since it appeared completely
impossible at first sight.

Benford’s Law is an interesting and at first counter-intuitive statistical
phenomenon that occurs in almost all natural data sets that span multiple
orders of magnitude. It states that the first digit of items in these sets is
much more likely to be small (e.g. 1 or 2) than big (e.g. 8 or 9). The expected
distribution is staggeringly weighted towards these small digits. According to the
law, 1 occurs as the first digit of about 30% of entries in data sets, whereas 9
appears first in only 5%!

Precisely, Benford’s Law states that the frequency with which a digit d occurs in
a base-10 data set spanning some orders of magnitude of powers of 10 is roughly
equal to log10(d+ 1) − log10(d) (Fig. 1). The spanning some orders of magnitude1 2 3 4 5 6 7 8 9

Fig. 1. Frequencies defined by the
Benford’s Law

condition is deceptively important – data sets not following this condition rarely
follow the law. As an example, the number of pages in books do not for the clear
reason that most page counts are somewhere between 200 and 600.

It’s difficult to overestimate how broadly this law applies: some data sets that
follow it in the real world are the heights of the hundred tallest buildings or
the lengths of rivers. Examples even extend to the purely mathematical, such
as the Fibonacci series, the series of powers of 2, and even the series obtained
from alternating between multiplication by 2 and 3! After hearing about the law
for the first time, I was slightly bemused – how could something so blatantly
asymmetric hold true in such a generalised sense? This article will aim to
provide an intuitive if not formal explanation for why the law holds, as well
as some history behind it and surprising places it can be applied in real life.

The law was first discovered in 1881 by Simon Newcomb, a Canadian-American
astronomer. He observed that the earlier pages of books of logarithms, used for
calculations were much more worn out than those later on. He conjectured that
this was due to the data sets scientists were performing calculations on tending
towards having numbers with lower starting digits. Newcomb published a brief
note on the phenomenon including the theoretical values of probabilities and
a short, informal argument explaining why it was true in the American Journal
of Mathematics, but it gained minimal traction.

More than fifty years later, in 1938, the law was rediscovered independently by
its namesake – Frank Benford. Benford was working in research physics when
he discovered the pattern in the same manner that Newcomb had. However,
he took his investigation of the law a level deeper and gathered sets of data
with 20,000 total items as examples. He used these as evidence in the paper he
published in the Proceedings of the American Philosophical Society, aptly titled
’The Law of Anomalous Numbers’. Unfortunately this name did not stick, and
the law was instead called after Benford, giving us another example of Stigler’s
Law in the mathematical world. worldStigler’s Law states that discoveries are

relatively rarely named after the people
who made them. One example of this is
Stigler’s Law itself.

The reader may be forgiven for some skepticism about all of the above at this
point – but what may at first seem like an impossible phenomenon luckily has
a simple and intuitive explanation. Say we have a set of numbers spanning
multiple orders of magnitude. We would expect the data points to be roughly
evenly distributed among these orders – e.g there are roughly the same number
of items in the interval [100, 1000] as [1000, 10 000]. On the logarithmic scale
those two intervals have the same length log10 10 = 1. By extrapolation we may
expect that for any two segments of equal length on the logarithmic scale the
number of items falling in either of them is roughly the same. In other words, we
expect the data points to be evenly spread on the logarithmic scale. The set of
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numbers whose base 10 representation starts with a digit d is a disjoint union of
sequences of length log10(d+ 1) − log10(d), which leads us to the probability given
by the Benford’s law.

We refer the reader to the article Od
mnożenia do dodawania (∆01

25) for further
interesting information on the logarithmic
scale
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Fig. 2. Coloured segments of length log10(3) − log10(2) correspond to having ‘2’ as the first digit

Let us note that the above reasoning does not constitute a full proof of
correctness of Benford’s Law. Theoreticians may argue that a „uniform
distribution” does not exist over the entire infinite logarithmic scale, while
practitioners may ask why we actually are focusing on a uniform distribution
in the logarithmic scale — whether this is a law of nature or if it also follows
from mathematical theorems of the kind found in the central limit theorem.
For readers who find this explanation unsatisfactory, we recommend Ted
Hill’s article A Statistical Derivation of the Significant-Digit Law, published
in Statistical Science in 1995.

Unlike many high-level mathematical theorems, there are a surprising number
of situations in the real world where direct application of the law becomes
extremely useful. The most important of these applications occur in the field
of fraud detection, where it is often used as a preliminary test to find faults.
Accounting books normally follow Benford’s Law, as would be expected from
a roughly random distribution over several orders of magnitude. However,
when random numbers are generated by computer or by hand in fabricated
accounts, one would expect them to instead have evenly distributed digits. After
first hearing about Benford’s Law, financial investigator Darrell D. Dorrell
immediately began applying it to cases he was working on. This led to the
successful conviction of Wesley Rhodes, a financial advisor who embezzled
millions of dollars in funds from his investors. The law is regularly used as a
first indicator or red flag of financial fraud – if the figures in checkbooks do not
follow the law, it is likely some kind of anomaly is at play.

One other very interesting use was the uncovering of
a hidden bot network on Twitter. Jennifer Golbeck
noticed in 2015 that for the majority of users, the
number of followers that their followers have adheres to
Benford’s Law. However, a small percentage of accounts
investigated did not adhere to the pattern. These
170 accounts were flagged and investigated further, by
examining their followers and post history. Out of all
170 only 2 seemed to belong to legitimate users. The
rest of the accounts all had followers among the other
accounts, and clearly automated or otherwise suspicious
posts.

However, the law has strong failings when it comes
to some other attempted uses, especially in election
fraud. There is a simple reason for this: electoral
districts normally have similar populations. Thus if
one candidate expects to receive a certain percentage
of votes in each of these districts, their first digit
distribution will be confined to a range not necessarily
following Benford’s Law. Similarly for financial fraud, if
a company sells a large number of a product that has
a specific price, the digit distribution in accounts will
be weighted towards the first digit of this product. In
the 2020 US presidential race, conspiracists noticed that
Joe Biden’s vote counts in some areas did not follow the
law. They were quick to raise this issue as an indicator

of a rigged election, but for the reasons above they were
proven to be mistaken in doing so.

Somewhat surprisingly, a much weaker version of the
law holds for the second digit of numbers in data sets
as well – in these cases, the difference in occurrences
between 0 and 9 as the second digit is only about 3%
– but this is still recognizable in large enough sets.
There is in fact a distribution in the general case for
the nth digit, although it becomes flatter and flatter
as n increases. In the application of Benford’s Law to
elections, it is this generalisation in combination with
the first digit law that allows a decision on whether or
not fraud exists to be much more reliable. The second
digit of a number will clearly be less affected in general
by the similarity of electoral district populations than
the first digit.

The nth digit is not the only generalisation of the law.
It also holds when the data points are converted into
any other base, and even when the data points are
converted from one unit into another. In my research
on the topic, I discovered other similarly surprising
results too – if you are interested, Zipf’s Law on the
frequency of words in texts is fascinating. I am still
surprised every time the law shows up in my day-to-day
life – if you start searching for it, you may begin to see
examples everywhere you go!
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https://deltami.edu.pl/2025/01/od-mnozenia-do-dodawania
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