
Magic fives Oskar SKIBSKI*
We all know that magic exists. Scientists try to explain most phenomena by* Faculty of Mathematics, Informatics and

Mechanics, University of Warsaw mathematical equations or create new definitions to pretend that what cannot
be described by equations also makes sense. However, we know very well that
they succeed in convincing only those already convinced. If the rabbit is not in
the hat, and the magician pulls it out of the hat, then there is no equation that
could describe it. One is one, and zero is zero.††Editor’s note: The (erroneous) opinions

expressed in this article are the author’s
own and may not necessarily coincide
(and they do not) with the views of
Delta.

Since we in Delta consistently pretend that magic does not exist, we will discuss
in this article an algorithm that appears to be magical, and yet is not. We can
compare it with a magic trick in which the magician simply pulls a rabbit out of
a hat, but does not show the audience beforehand that the hat is empty. For a
moment it may surprise us (“Oh! Rabbit!”). However, with careful analysis and
logical reasoning this trick can be explained: the rabbit must have been sitting
on the magician’s head throughout the performance, and while removing the hat
the magician gently hooked the rabbit’s legs and thus had something to pull out
of the hat.

Magic trick: We have a hat with n rabb. . . no no, let’s be at least a little
serious! We have a set A containing n numbers (some numbers may repeat).
One of the spectators says a number k from 1 to n. The magician in linear time
finds the k-th largest number in the set A.

How to do the trick: For some values of k this task is very simple, e.g. for
k = 1 our problem boils down to finding the smallest element in the set, which
can be easily done in linear time. However, in general (e.g., if k = ⌈n/2⌉) it is not
clear how we can do this. The case of k = ⌈n/2⌉ is, by the way, very important
for statisticians, as it concerns the so-called median, which can have even more
charm for them than the average. The natural idea is to sort all the elements
and then point to the one in the k-th position. However, the fastest sorting
algorithms run in O(n log n) time. Our problem seems much simpler than sorting
all elements – how to solve it in linear time?

When we write that the running time of
f(n) is O(g(n)) we mean that f is at
most of the order of g, that is, for large
values of n the function f(n) grows no
faster than g(n). Formally: there exist
constants c and n0 that for n ⩾ n0 it
holds f(n) ⩽ c · g(n). Thus, this is an
upper bound estimate, but usually not
the best one that can be found

We will borrow the idea for our solution from the magic trick of a woman sawn
in half, or if you prefer, from Hoare’s algorithm. Take a random element m and
divide our entire set into two non-empty sets so that the first set contains only
elements less than or equal to m (set A⩽), and the second set: greater than or
equal to m (set A⩾). In order to make the sets non-empty, we can, for example,
put all the elements less than or equal to m into the first set, and if the second
set turns out to be empty put m into it. Now, if A⩽ has at least k elements,

To some readers, this may resemble the
QuickSort algorithm. In the QuickSort
algorithm, in order to sort a set of
numbers, we divide it into elements
smaller and larger than a certain element,
and then sort both parts. It is no
coincidence that the author of the
QuickSort algorithm is also Tony Hoare.

then the element we are looking for must be in A⩽ – so we recursively search
for it in this set. On the other hand, if the set A⩽ has less than k elements, then
the element we are looking for is in the set A⩾: we must therefore recursively
find (k − |A⩽|)-th largest element there.

The idea is simple, but it may not be very efficient – if we are unlucky to always
draw the smallest or the largest element, in every step our set A will decrease
by only one element. And since each step requires linear time, the pessimistic
running time of our algorithm will be quadratic: O(n2). That is even worse than
with sorting!

However, our algorithm can be improved by changing the element based on
which we divide the set. In the card trick, to find the card chosen by a spectator,
the magician usually does not rely on fate, but carefully shuffles the deck to
control where that card is. We will do the same – we will shuffle the elements a
bit and draw one that guarantees that none of the parts are too big.

This is how the median of medians algorithm (in Polish called the magic fives
algorithm) works. Let us divide arbitrarily our set into fives of elements (the last
five can be incomplete) and for each find its median. Now, using our algorithm
recursively, we find the median of the medians: we will denote it by m. Now,
we divide our set into three parts: elements smaller than m (denoted by A<),
elements equal to m (denoted by A=) and elements larger than m (denoted

6

by A>). Now if |A<| ⩾ k, we recursively look for the k-th largest element in it. If
|A<| < k, but |A<| + |A=| ⩾ k, it means that m is the k-th largest element. If, on

Solution to Problem F 1076.
If we neglect boundary effects, a uniform
electric field perpendicular to the surface
of the plates will appear between them
after charging.The charge densities will
also be uniform. Let’s assume that the
total surface area of each plate is S, then
the charge densities will be: σ1 = Q1/S
and σ2 = Q2/S. Based on Gauss’s law, we
find that inside the capacitor, each plate
is the source of an electric field with
intensity:

Ei =
σi

2ε0
.

In the above formula, ε0 represents the
vacuum permittivity. The electric field is
directed “away from the plate” if its
charge is positive and “towards the plate”
if it is negative. The resultant electric
field inside the capacitor is the sum of
the fields from both plates and is given
by:

E = E1 − E2 =
σ1 − σ2

2ε0
=

Q1 − Q2

2ε0S
,

and the value of the potential difference
is:

U = Ed = (E1 − E2)d =
(Q1 − Q2)d

2ε0S
=

=
Q1 − Q2

2C
.

the other hand, |A<| + |A=| < k, then we have to look recursively for our element
in the set A> – it is the (k − |A<| − |A=|)-th largest there. Voila!
Explanation of the trick: Okay, but how can we be sure that none of the
parts will be too big and the running time will be linear? Note that in half of
the fives, the median is less than or equal to m. In each such five, at least half
of the elements are less than or equal to m. It follows that at least 1/4 of all the
elements are less than or equal to m. This also means that no more than 3/4
of all the elements are greater than m. Similarly, no more than 3/4 of all the
elements are smaller than m. This means that no matter which case occurs, we
will recursively call our algorithm on a set reduced by at least 25%.

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽
⩽

⩽
⩽

⩽
⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

⩽

⩽
⩽

⩽
⩽

elements ⩽ m

elements ⩾ m

Is this enough to make our algorithm run in linear time? It turns out that it is!
Let us denote the running time of our algorithm by T (n). Dividing into fives and
selecting from each the median can be done in linear time – O(n). Selecting the
median of the medians will take us T (⌈ n

5 ⌉) time. The last step is a recursive call
for any of the parts. As we have already showed, none of the parts has more
than 3/4 of all elements, so the time is T (⌈ 3n

4 ⌉). Thus, we get the following
upper bound:

T (n) ⩽ O(n) + T

(⌈
n

5

⌉)
+ T

(⌈
3n

4

⌉)
.

As it turns out this upper bound implies the running time of our algorithm is
linear! The key here is the inequality 1

5 + 3
4 = 19

20 < 1, which ensures that T (n)
does not grow too fast.
To see this, first assume that n is a power of 20 so that it divides nicely by 4
and 5. We know that the time needed to divide into fives and pick medians
can be bounded by cn for some natural c. It is easy to show by induction that
T (n) ⩽ 20cn:

T (n) ⩽ cn + T
(n

5

)
+ T

(
3n

4

)
⩽ cn + 20cn

(
1
5 + 3

4

)
= 20cn.

From the upper bound for powers of 20, we immediately get an upper bound forSolution to Problem F 1075.
Observations from directions between the
two tangents to the surface of the stars
(as shown in the diagram) are associated
with the occurrence of eclipses. These
tangents intersect at a point dividing the
segment d into segments d1 and d2,
d = d1 + d2. This corresponds to the
range of observation angles α for which
the inequality holds:

| sin α| ⩽
r1

d1
=

r2

d2
=

r1 + r2

d
.

The model considered in the task
describes the simplest case of a binary
system. In general, gravitational
interactions between the stars can lead to
deformations from spherical to ellipsoidal
shapes or even to the flow of matter
between them.

d

d1 d2

αr1

r2

other numbers: Take any n and choose k so that 20k < n ⩽ 20k+1. Since T is a
non-decreasing function, we know that T (n) ⩽ T (20k+1). But since n > 20k we
get that

T (n) ⩽ T (20k+1) ⩽ 20c · 20k+1 ⩽ 202cn.

Since there is a constant 202c such that for any n there exists T (n) ⩽ 202c · n this
means that our algorithm runs in linear time: O(n).
Finally, it remains to ask the question – why fives? It seems natural to take
an odd number (so that there are middle values), but could we take threes or
sevens? Or elevens?
It turns out that we could not take threes: we would first have to find the
median of 1/3 of all elements, and this would only reduce the problem by 1/4.
As 1/3 + 1/4 < 1, that would result in O(n log n) time. We could instead take
sevens, nines, etc: Looking for the median among 1/7 or 1/9 of all the elements
would be even faster than looking for the median of 1/5. However, we would
increase the cost of finding the medians (i.e., that enigmatic c in the above
proof) and the implementation would be more complex. So fives are used in the
algorithm, because five is the smallest odd number greater than four. And that’s
the whole magic.

7

